ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Диагонали четырехугольника ABCD пересекаются в точке P, причем  SABP2 + SCDP2 = SBCP2 + SADP2. Докажите, что P — середина одной из диагоналей.

Вниз   Решение


Постройте прямую, проходящую через данную точку и касающуюся данной окружности.

ВверхВниз   Решение


Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

ВверхВниз   Решение


Три равные окружности пересекаются так, как показано на рис., а или б. Докажите, что  $ \smile$ AB1 + $ \smile$ BC1± $ \smile$ CA1 = 180o, где знак минус берется в случае б.



ВверхВниз   Решение


"То" да "это", да половина "того" да "этого" – сколько это будет процентов от трёх четвертей "того" да "этого"?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 88158

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 5,6,7,8

"То" да "это", да половина "того" да "этого" – сколько это будет процентов от трёх четвертей "того" да "этого"?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .