ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Выпуклая фигура $ \Phi$ имеет площадь S и полупериметр p. Докажите, что если S > np для некоторого натурального n, то $ \Phi$ содержит по крайней мере n целочисленных точек.

Вниз   Решение


Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость разбита на равносторонние треугольники со стороной 1.
M – множество всех их вершин. A и B – две вершины одного треугольника. Разрешается поворачивать плоскость на 120° вокруг любой из вершин множества M. Можно ли за несколько таких преобразований перевести точку A в точку B?

ВверхВниз   Решение


Сумму цифр числа a обозначим через S(a). Доказать, что если  S(a) = S(2a),  то число a делится на 9.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78276

Темы:   [ Количество и сумма делителей числа ]
[ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 8,9

Сумму цифр числа a обозначим через S(a). Доказать, что если  S(a) = S(2a),  то число a делится на 9.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .