|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что: а) радиус вписанной окружности треугольника равен (a + b - c)/2; б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2. Если произведение трёх положительных чисел равно 1, а сумма этих чисел строго больше суммы их обратных величин, то ровно одно из этих чисел больше 1. Докажите это. |
Страница: 1 [Всего задач: 5]
Если произведение трёх положительных чисел равно 1, а сумма этих чисел строго больше суммы их обратных величин, то ровно одно из этих чисел больше 1. Докажите это.
В треугольнике ABC через середину M стороны BC и центр O вписанной в этот треугольник окружности проведена прямая MO, которая пересекает высоту AH в точке E. Докажите, что отрезок AE равен радиусу вписанной окружности.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|