ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

Вниз   Решение


Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

ВверхВниз   Решение


Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.

ВверхВниз   Решение


A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.

ВверхВниз   Решение


Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет?

ВверхВниз   Решение


Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

ВверхВниз   Решение


Докажите, что площадь S треугольника равна abc/4R.

ВверхВниз   Решение


Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых  a + b  лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65710  (#10.4)

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Дана клетчатая таблица 100×100, клетки которой покрашены в чёрный и белый цвета. При этом во всех столбцах поровну чёрных клеток, в то время как во всех строках разные количества чёрных клеток. Каково максимальное возможное количество пар соседних по стороне разноцветных клеток?
Прислать комментарий     Решение


Задача 65707  (#11.4)

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Есть клетчатая доска 2015×2015. Дима ставит в k клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем k Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?

Прислать комментарий     Решение

Задача 65697  (#9.5)

Темы:   [ Теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

Прислать комментарий     Решение

Задача 65702  (#10.5)

Темы:   [ Теория множеств (прочее) ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых  a + b  лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.

Прислать комментарий     Решение

Задача 65702  (#11.5)

Темы:   [ Теория множеств (прочее) ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых  a + b  лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .