|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости даны две замкнутые ломаные $a,b$ (возможно, самопересекающиеся) и точки $K$, $L$, $M$, $N$. Вершины ломаных и эти точки находятся в общем положении (т.е. никакие три из них не лежат на прямой и никакие три отрезка, их соединяющие, не имеют общей внутренней точки). Каждый из отрезков $KL$ и $MN$ пересекает ломаную $a$ в четном количестве точек, а каждый из отрезков $LM$ и $NK$ – в нечетном. Ломаная $b$, наоборот, пересекает каждый из отрезков $KL$ и $MN$ в нечетном количестве точек, а каждый из отрезков $LM$ и $NK$ – в четном. Докажите, что ломаные $a$ и $b$ пересекаются. Двое делят кусок сыра. Сначала первый режет сыр на два куска, потом второй – любой из кусков на два, и так далее, пока не получится пять кусков. Затем первый берёт себе один кусок, потом второй – один из оставшихся кусков, потом снова первый – и так, пока куски не закончатся. Для каждого игрока выяснить, какое наибольшее количество сыра он может себе гарантировать. |
Страница: << 1 2 [Всего задач: 7]
Двое делят кусок сыра. Сначала первый режет сыр на два куска, потом второй – любой из кусков на два, и так далее, пока не получится пять кусков. Затем первый берёт себе один кусок, потом второй – один из оставшихся кусков, потом снова первый – и так, пока куски не закончатся. Для каждого игрока выяснить, какое наибольшее количество сыра он может себе гарантировать.
Пусть A и B – два прямоугольника. Из прямоугольников, равных A, сложили прямоугольник, подобный B.
Страница: << 1 2 [Всего задач: 7] |
||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|