|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка? В наборе –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5 замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились. а) Найдите ГМТ, равноудаленных от двух параллельных прямых. б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых. Пусть p – простое число. Сколько существует таких натуральных n, что pn делится на p + n? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Пусть p – простое число. Сколько существует таких натуральных n, что pn делится на p + n?
Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.). б) При каких n > 4 существует выдающийся многоугольник из n клеток?
Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
Докажите, что сумма длин любых двух медиан произвольного треугольника
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|