ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сумма трёх натуральных чисел, являющихся точными квадратами, делится на 9.
Докажите, что из них можно выбрать два, разность которых также делится на 9.

Вниз   Решение


Докажите, что при  n > 0  многочлен  P(x) = n²xn+2 – (2n² + 2n – 1)xn+1 + (n + 1)²xn – x – 1  делится на  (x – 1)³.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 61023  (#06.100)

Тема:   [ Производная и кратные корни ]
Сложность: 4
Классы: 10,11

Докажите, что многочлен x2n - nxn + 1 + nxn - 1 - 1 при n > 1 имеет трехкратный корень x = 1.

Прислать комментарий     Решение

Задача 64409  (#06.101)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Производная и кратные корни ]
Сложность: 4-
Классы: 10,11

Докажите, что многочлен P(x) делится на свою производную тогда и только тогда, когда P(x) имеет вид  P(x) = an(x – x0)n.

Прислать комментарий     Решение

Задача 61025  (#06.102)

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что при  n > 0  многочлен  nxn+1 – (n + 1)n  + 1  делится на  (x – 1)2.

Прислать комментарий     Решение

Задача 64410  (#06.103)

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 10,11

Докажите, что при  n > 0  многочлен  P(x) = n²xn+2 – (2n² + 2n – 1)xn+1 + (n + 1)²xn – x – 1  делится на  (x – 1)³.

Прислать комментарий     Решение

Задача 64411  (#06.104)

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 10,11

Докажите, что при  n > 0  многочлен  x2n+1 – (2n + 1)xn+1 + (2n + 1)xn – 1  делится на  (x – 1)³.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .