ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Длины сторон треугольника ABC не превышают 1.
Докажите, что  p(1 – 2Rr) ≥ 1,  где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.

Вниз   Решение


Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:   (1 + x/y)(1 + y/z)(1 + z/x) ≥ 8.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 76]      



Задача 61377  (#10.026)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10,11

Докажите неравенство для положительных значений переменных:   a³b + b³c + c³aabc(a + b + c).

Прислать комментарий     Решение

Задача 61378  (#10.027)

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Докажите неравенство для положительных значений переменных:   2(a³ + b³ + c³) ≥ ab(a + b) + ac(a + c) + bc(b + c).

Прислать комментарий     Решение

Задача 61379  (#10.028)

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9,10,11

Докажите неравенство для положительных значений переменных:  

Прислать комментарий     Решение

Задача 61380  (#10.029)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   (1 + x/y)(1 + y/z)(1 + z/x) ≥ 8.

Прислать комментарий     Решение

Задача 30872  (#10.030)

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

a, b, c – положительные числа. Докажите, что  

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .