|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Длины сторон треугольника ABC не превышают 1. Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна? Докажите неравенство для положительных значений переменных: (1 + x/y)(1 + y/z)(1 + z/x) ≥ 8. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 76]
Докажите неравенство для положительных значений переменных: a³b + b³c + c³a ≥ abc(a + b + c).
Докажите неравенство для положительных значений переменных: 2(a³ + b³ + c³) ≥ ab(a + b) + ac(a + c) + bc(b + c).
Докажите неравенство для положительных значений переменных:
a, b, c – положительные числа. Докажите, что
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 76] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|