ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?

Вниз   Решение


Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.

ВверхВниз   Решение


Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:   x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]      



Задача 61367  (#10.016)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Докажите неравенство  xαyβ ≤ αx + βy  для положительных значений переменных при условии, что  α + β = 1  (α, β > 0).

Прислать комментарий     Решение

Задача 61368  (#10.017)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   a²b² + b²c² + a²c² ≥ abc(a + b + c).

Прислать комментарий     Решение

Задача 61369  (#10.018)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство  (a + 1)(b + 1)(a + c)(b + c) ≥ 16abc  для положительных значений переменных.

Прислать комментарий     Решение

Задача 61370  (#10.019)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство   (a + b + c + d + 1)² ≥ 4(a² + b² + c² + d²)  при  a, b, c, d ∈ [0, 1].

Прислать комментарий     Решение

Задача 61371  (#10.020)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .