|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?
Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника. Муравей ползает по проволочному каркасу куба, при этом он никогда не
поворачивает назад. Докажите неравенство для положительных значений переменных: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]
Докажите неравенство для положительных значений переменных: a²b² + b²c² + a²c² ≥ abc(a + b + c).
Докажите неравенство (a + 1)(b + 1)(a + c)(b + c) ≥ 16abc для положительных значений переменных.
Докажите неравенство (a + b + c + d + 1)² ≥ 4(a² + b² + c² + d²) при a, b, c, d ∈ [0, 1].
Докажите неравенство для положительных значений переменных: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|