ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

Вниз   Решение


Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 60632  (#04.006)

Темы:   [ Четность и нечетность ]
[ Обход графов ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9,10

Город имеет форму квадрата 5×5:

Какую наименьшую длину может иметь маршрут, если нужно пройти по каждой улице этого города и вернуться в прежнее место? (По каждой улице можно проходить любое число раз.)

Прислать комментарий     Решение

Задача 60633  (#04.007)

Темы:   [ Четность и нечетность ]
[ Шахматная раскраска ]
[ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

а) Может ли ладья перейти из одного угла шахматной доски в противоположный угол (по диагонали), побывав по одному разу на всех 64 клетках?
б) Тот же вопрос для коня.

Прислать комментарий     Решение

Задача 60634  (#04.008)

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
Сложность: 3
Классы: 7,8

Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве?

Прислать комментарий     Решение

Задача 60635  (#04.009)

Темы:   [ Четность и нечетность ]
[ Обход графов ]
[ Шахматная раскраска ]
Сложность: 3
Классы: 8,9

Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.

Прислать комментарий     Решение

Задача 58162  (#04.010)

Темы:   [ Треугольники (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .