ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Двое играют в такую игру. Один задумывает натуральное число n, а другой задаёт вопросы типа «верно ли, что n не меньше x» (число x он может выбирать по своему усмотрению) и получает ответы «да» или «нет». Каждой возможной стратегии T второго игрока сопоставим функцию fT(n), равную числу вопросов (до отгадывания), если было задумано число n. Пусть, например, стратегия T состоит в том, что сначала задают вопросы: «верно ли, что n не меньше 10?», «верно ли, что n не меньше 20?», ... до тех пор, пока на какой-то вопрос «верно ли, что n не меньше 10(k + 1)» не будет дан ответ «нет», а затем задают вопросы «верно ли, что n не меньше 10k + 1», «верно ли, что n не меньше 10k + 2» и так далее. Тогда fT(n) = a + 2 + (na)/10, где a последняя цифра числа n, то есть fT(n) растёт примерно как n/10.

а) Предложите стратегию, для которой функция fT растёт медленнее.

б) Сравнивая две стратегии, удобно для произвольной стратегии Т вместо функции fT ввести функцию fT, значение которой для любого натурального числа n равно наибольшему из чисел fT(k), где k пробегает значения от 1 до n. Оцените снизу fT для произвольной стратегии T.

Вниз   Решение


Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 60351  (#02.017)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7

Докажите, что среди москвичей есть два человека с равным числом волос, если известно, что у любого человека на голове менее одного миллиона волос.

Прислать комментарий     Решение

Задача 60352  (#02.018)

Темы:   [ Принцип Дирихле (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9

В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 жёлтых, остальные – чёрные и белые.
Какое наименьшее число шаров надо вынуть из мешка, не видя их, чтобы среди них было не менее 10 шаров одного цвета?

Прислать комментарий     Решение

Задача 60353  (#02.019)

Темы:   [ Принцип Дирихле (прочее) ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3
Классы: 7,8

Некоторые точки из данного конечного множества соединены отрезками. Докажите, что найдутся две точки, из которых выходит поровну отрезков.

Прислать комментарий     Решение

Задача 60354  (#02.020)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Имеется  2k + 1  карточек, занумерованных числами от 1 до  2k + 1.  Какое наибольшее число карточек можно выбрать так, чтобы ни один из извлечённых номеров не был равен сумме двух других извлечённых номеров?

Прислать комментарий     Решение

Задача 60355  (#02.021)

Тема:   [ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .