|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Внутри каждой стороны параллелограмма выбрано по точке. Выбранные точки сторон, имеющих общую вершину, соединены. Докажите, что центры описанных окружностей четырех получившихся треугольников являются вершинами некоторого параллелограмма. Некоторые точки из данного конечного множества соединены отрезками. Докажите, что найдутся две точки, из которых выходит поровну отрезков. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]
На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу?
Докажите, что среди москвичей есть два человека с равным числом волос, если известно, что у любого человека на голове менее одного миллиона волос.
В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 жёлтых, остальные – чёрные и белые.
Некоторые точки из данного конечного множества соединены отрезками. Докажите, что найдутся две точки, из которых выходит поровну отрезков.
Имеется 2k + 1 карточек, занумерованных числами от 1 до 2k + 1. Какое наибольшее число карточек можно выбрать так, чтобы ни один из извлечённых номеров не был равен сумме двух других извлечённых номеров?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|