|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что an = a и ai+1 = ai – S(ai) при всех i = 0, 1, ..., n – 1. Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим? Даны натуральные числа x1, ..., xn. Докажите, что число |
Страница: << 1 2 [Всего задач: 7]
Даны натуральные числа x1, ..., xn. Докажите, что число
Числовая последовательность A1, A2, ..., An, ... определена равенствами A1 = 1, A2 = – 1, An = – An–1 – 2An–2 (n ≥ 3).
Страница: << 1 2 [Всего задач: 7] |
|||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|