|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Одуванчик утром распускается, два дня цветёт жёлтым, на третий день утром становится белым, а к вечеру облетает. Вчера днем на поляне было 20 жёлтых и
14 белых одуванчиков, а сегодня 15 жёлтых и 11 белых. Докажите, что для любого многочлена P(x) степени n с натуральными коэффициентами найдется такое целое число k, что числа P(k), P(k + 1), ..., Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет вершин других треугольников. Пусть n и m — количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его. а) Докажите, что p = n + 2m - 2. б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
а) Докажите, что p = n + 2m - 2. б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|