ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Имеется необычный калькулятор. При включении калькулятора на экране возникает дробь 1/1. При нажатии на кнопку * к числителю дроби, изображенной на экране, прибавляется знаменатель, а знаменатель остается прежним. При нажатии на кнопку $ числитель и знаменатель дроби меняются местами. Других кнопок на калькуляторе нет.
  а) Что покажет калькулятор после выполнения следующей последовательности команд:  $ * * * * * * * * * * $ ?
Как добиться того, чтобы калькулятор показал:
  б) 1/2,   в) 7/3,   г) 4/11,   д) 57/91 ?

Вниз   Решение


Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

ВверхВниз   Решение


На плоскости дано конечное число точек. Докажите, что из них всегда можно выбрать точку, для которой ближайшими к ней являются не более трех данных точек.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 58067  (#20.021)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3
Классы: 8,9

Решите задачу 20.8, воспользовавшись понятием выпуклой оболочки.
Прислать комментарий     Решение


Задача 58068  (#20.022)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На плоскости даны 2n + 3 точки, никакие три из которых не лежат на одной прямой, а никакие четыре не лежат на одной окружности. Докажите, что из этих точек можно выбрать три точки так, что n из оставшихся точек лежат внутри окружности, проведенной через выбранные точки, а n — вне ее.
Прислать комментарий     Решение


Задача 58069  (#20.023)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.
Прислать комментарий     Решение


Задача 58070  (#20.024)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На плоскости дано конечное число точек. Докажите, что из них всегда можно выбрать точку, для которой ближайшими к ней являются не более трех данных точек.
Прислать комментарий     Решение


Задача 58071  (#20.025)

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На столе расположено n картонных и n пластмассовых квадратов, причем никакие два картонных и никакие два пластмассовых квадрата не имеют общих точек, в том числе и точек границы. Оказалось, что множество вершин картонных квадратов совпадает с множеством вершин пластмассовых квадратов. Обязательно ли каждый картонный квадрат совпадает с некоторым пластмассовым?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .