ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?

Вниз   Решение


Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
Можно ли с помощью таких операций собрать все фишки в одном секторе?

ВверхВниз   Решение


Докажите, что если диагонали четырехугольника ABCD перпендикулярны, то и диагонали любого другого четырехугольника с такими же длинами сторон перпендикулярны.

ВверхВниз   Решение


Постройте четырехугольник по углам и диагоналям.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 57822  (#15.010)

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9

Постройте четырехугольник ABCD по четырем углам и длинам сторон AB = a и CD = b.
Прислать комментарий     Решение


Задача 55699  (#15.011)

Темы:   [ Перенос помогает решить задачу ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Радикальная ось ]
Сложность: 5
Классы: 8,9

С помощью циркуля и линейки проведите через данную точку прямую, на которой две данные окружности высекали бы равные хорды.

Прислать комментарий     Решение


Задача 57824  (#15.012)

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Даны окружности S1 и S2, пересекающиеся в точках A и B. Проведите через точку A прямую l так, чтобы отрезок этой прямой, заключенный внутри окружностей S1 и S2, имел данную длину.
б) Впишите в данный треугольник ABC треугольник, равный данному треугольнику PQR.
Прислать комментарий     Решение


Задача 57825  (#15.013)

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 6+
Классы: 8,9

Постройте четырехугольник по углам и диагоналям.
Прислать комментарий     Решение


Задача 57826  (#15.014)

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Найдите геометрическое место точек: а) сумма; б) разность расстояний от которых до двух данных прямых имеет данную величину.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .