ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Треугольники ABC1 и ABC2 имеют общее основание AB и  $ \angle$AC1B = $ \angle$AC2B. Докажите, что если | AC1 - C1B| < | AC2 - C2B|, то:
а) площадь треугольника ABC1 больше площади треугольника ABC2;
б) периметр треугольника ABC1 больше периметра треугольника ABC2.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



Задача 57566  (#11.046)

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 6
Классы: 8,9

а) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьший периметр имеет правильный n-угольник.
Прислать комментарий     Решение


Задача 57567  (#11.047)

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 4+
Классы: 8,9

Треугольники ABC1 и ABC2 имеют общее основание AB и  $ \angle$AC1B = $ \angle$AC2B. Докажите, что если | AC1 - C1B| < | AC2 - C2B|, то:
а) площадь треугольника ABC1 больше площади треугольника ABC2;
б) периметр треугольника ABC1 больше периметра треугольника ABC2.
Прислать комментарий     Решение


Задача 57568  (#11.048)

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 6+
Классы: 8,9

а) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольший периметр имеет правильный n-угольник.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .