ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

Вниз   Решение


Многоугольник (не обязательно выпуклый), вырезанный из бумаги, перегибается по некоторой прямой и обе половинки склеиваются. Может ли периметр полученного многоугольника быть больше, чем периметр исходного?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 57401

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 4+
Классы: 8,9

Докажите, что периметр остроугольного треугольника не меньше 4R.
Прислать комментарий     Решение


Задача 57397

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 5
Классы: 8,9

Многоугольник (не обязательно выпуклый), вырезанный из бумаги, перегибается по некоторой прямой и обе половинки склеиваются. Может ли периметр полученного многоугольника быть больше, чем периметр исходного?
Прислать комментарий     Решение


Задача 57398

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 5
Классы: 8,9

В треугольник вписана окружность. Около неё описан квадрат. Докажите, что вне треугольника лежит меньше половины периметра квадрата.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .