|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Рассматривается функция y = f (x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа k ≠ 0 соотношению f (x + k) . (1 − f (x)) = 1 + f (x). Доказать, что f (x) — периодическая функция. Докажите, что для любой невыпуклой фигуры Постройте окружность, касательные к которой, проведенные из трех данных точек A, B и C, имели бы длины a, b и c соответственно. |
Страница: << 1 2 [Всего задач: 8]
Страница: << 1 2 [Всего задач: 8] |
||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|