|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Диагонали четырехугольника ABCD пересекаются в точке P, причем SABP2 + SCDP2 = SBCP2 + SADP2. Докажите, что P — середина одной из диагоналей. Постройте прямую, проходящую через данную точку и касающуюся данной окружности. |
Страница: 1 [Всего задач: 5]
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|