|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN. Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трех векторов. В кубке Водоканала по футболу участвовали команды "Помпа", "Фильтр", "Насос" и "Шлюз". Каждая команда сыграла с каждой из остальных по одному разу (за победу давалось 3 очка, за ничью – 1, за проигрыш – 0). Команда "Помпа" набрала больше всех очков, команда "Шлюз" – меньше всех. Могло ли оказаться так, что "Помпа" обогнала "Шлюз" всего на 2 очка? В треугольнике ABC проведена высота AH; O — центр описанной окружности. Докажите, что Учитель рисует на листке бумаги несколько кружков и спрашивает одного ученика: ``Сколько здесь кружков?''. ``Семь''- отвечает ученик. ``Правильно. Так сколько здесь кружков?'' - опять спрашивает учитель другого ученика. ``Пять'' - отвечает тот. ``Правильно'' - снова говорит учитель. Так сколько же кружков он нарисовал на листке? Постройте окружность с данным центром, касающуюся данной окружности. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|