ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.

Вниз   Решение


Даны отрезки, длины которых равны a, b и c. Постройте отрезок длиной: a) ab/c; б) $ \sqrt{ab}$.

ВверхВниз   Решение


Постройте прямоугольный треугольник по катету и гипотенузе.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101]      



Задача 57190  (#08.000.1)

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте треугольник ABC по стороне a, высоте ha и углу A.
Прислать комментарий     Решение


Задача 57191  (#08.000.2)

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте прямоугольный треугольник по катету и гипотенузе.
Прислать комментарий     Решение


Задача 57192  (#08.000.3)

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте окружность с данным центром, касающуюся данной окружности.
Прислать комментарий     Решение


Задача 57193  (#08.000.4)

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте прямую, проходящую через данную точку и касающуюся данной окружности.
Прислать комментарий     Решение


Задача 57194  (#08.000.5)

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Даны отрезки, длины которых равны a, b и c. Постройте отрезок длиной: a) ab/c; б) $ \sqrt{ab}$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .