ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Соколов А.

Точка $O$ — центр описанной окружности треугольника $ABC$. Серединный перпендикуляр к $BC$ пересекает $AB$ и $AC$ в точках $X$ и $Y$. Прямая $AO$ пересекает прямую $BC$ в точке $D$, $M$ — середина $BC$. Описанная окружность треугольника $ADM$ пересекает описанную окружность треугольника $ABC$ в точке $E$, отличной от $A$. Докажите, что прямая $OE$ касается описанной окружности треугольника $AXY$.

Вниз   Решение


В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что
  а) касательная в точке A к описанной окружности параллельна прямой B1C1;
  б)  B1C1OA,  где O – центр описанной окружности.

ВверхВниз   Решение


На столе лежат 6 яблок (не обязательно одинакового веса). Таня разложила их по 3 на две чашки весов, и весы остались в равновесии. А Саша разложил те же яблоки по-другому: 2 яблока на одну чашку и 4 на другую, и весы опять остались в равновесии. Докажите, что можно положить на одну чашку весов одно яблоко, а на другую два так, что весы останутся в равновесии.

ВверхВниз   Решение


Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.

ВверхВниз   Решение


Докажите, что отрезок, высекаемый на стороне AB остроугольного треугольника ABC окружностью девяти точек, виден из ее центра под углом  2|$ \angle$A - $ \angle$B|.

ВверхВниз   Решение


Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая отрезки PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 56657

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая отрезки PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной.
Прислать комментарий     Решение


Задача 56658

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

Вписанная окружность треугольника ABC касается стороны BC в точке K, а вневписанная — в точке L. Докажите, что  CK = BL = (a + b - c)/2, где a, b, c — длины сторон треугольника.
Прислать комментарий     Решение


Задача 56659

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

На основании AB равнобедренного треугольника ABC взята точка E, и в треугольники ACE и ECB вписаны окружности, касающиеся отрезка CE в точках M и N. Найдите длину отрезка MN, если известны длины отрезков AE и BE.
Прислать комментарий     Решение


Задача 56660

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 4
Классы: 7,8

Четырехугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон BC и CD. Докажите, что  AB + BC = AD + DC.
Прислать комментарий     Решение


Задача 56661

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 4
Классы: 7,8

Общая внутренняя касательная к окружностям с радиусами R и r пересекает их общие внешние касательные в точках A и B и касается одной из окружностей в точке C. Докажите, что  AC . CB = Rr.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .