ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Исаев М.

Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN.

Вниз   Решение


Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трех векторов.

ВверхВниз   Решение


В кубке Водоканала по футболу участвовали команды "Помпа", "Фильтр", "Насос" и "Шлюз". Каждая команда сыграла с каждой из остальных по одному разу (за победу давалось 3 очка, за ничью – 1, за проигрыш – 0). Команда "Помпа" набрала больше всех очков, команда "Шлюз" – меньше всех. Могло ли оказаться так, что "Помпа" обогнала "Шлюз" всего на 2 очка?

ВверхВниз   Решение


В треугольнике ABC проведена высота AHO — центр описанной окружности. Докажите, что  $ \angle$OAH = |$ \angle$B - $ \angle$C|.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56633

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2
Классы: 8,9

В треугольнике ABC проведена высота AHO — центр описанной окружности. Докажите, что  $ \angle$OAH = |$ \angle$B - $ \angle$C|.
Прислать комментарий     Решение


Задача 56634

Тема:   [ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

Пусть H — точка пересечения высот треугольника ABC, а AA' — диаметр его описанной окружности. Докажите, что отрезок A'H делит сторону BC пополам.
Прислать комментарий     Решение


Задача 56635

Тема:   [ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

Через вершины A и B треугольника ABC проведены две параллельные прямые, а прямые m и n симметричны им относительно биссектрис соответствующих углов. Докажите, что точка пересечения прямых m и n лежит на описанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 56636

Тема:   [ Вписанный угол (прочее) ]
Сложность: 4
Классы: 8,9

а) Из точки A проведены прямые, касающиеся окружности S в точках B и C. Докажите, что центр вписанной окружности треугольника ABC и центр его вневписанной окружности, касающейся стороны BC, лежат на окружности S.
б) Докажите, что окружность, проходящая через вершины B и C любого треугольника ABC и центр O его вписанной окружности, высекает на прямых AB и AC равные хорды.
Прислать комментарий     Решение


Задача 56637

Тема:   [ Вписанный угол (прочее) ]
Сложность: 5
Классы: 8,9

На сторонах AC и BC треугольника ABC внешним образом построены квадраты ACA1A2 и BCB1B2. Докажите, что прямые  A1B, A2B2 и AB1 пересекаются в одной точке.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .