ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

Вниз   Решение


Четырехугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон BC и CD. Докажите, что  AB + BC = AD + DC.

ВверхВниз   Решение


Докажите, что среди чисел, записываемых только единицами, есть число, которое делится на 1987.

ВверхВниз   Решение


а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
б) Докажите, что пучок окружностей полностью задаётся одной окружностью и радикальной осью.

ВверхВниз   Решение


Может ли объединение двух треугольников оказаться 13-угольником?

ВверхВниз   Решение


Прямоугольный треугольник ABC с прямым углом A движется так, что его вершины B и C скользят по сторонам данного прямого угла. Докажите, что множеством точек A является отрезок и найдите его длину.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 56541

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 7,8

Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.
Прислать комментарий     Решение


Задача 56542

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 7,8

Две окружности пересекаются в точках M и K. Через M и K проведены прямые AB и CD соответственно, пересекающие первую окружность в точках A и C, вторую в точках B и D. Докажите, что  AC || BD.
Прислать комментарий     Решение


Задача 56543

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 7,8

Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.
Прислать комментарий     Решение


Задача 56544

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

а) Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке M; O — центр вписанной окружности, Ob — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и Ob лежат на окружности с центром M.
б) Точка O, лежащая внутри треугольника ABC, обладает тем свойством, что прямые AO, BO и CO проходят через центры описанных окружностей треугольников BCO, ACO и ABO. Докажите, что O — центр вписанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 56545

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

Прямоугольный треугольник ABC с прямым углом A движется так, что его вершины B и C скользят по сторонам данного прямого угла. Докажите, что множеством точек A является отрезок и найдите его длину.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .