ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Даны два натуральных числа a и b, не равные нулю одновременно. Вычислить НОД(a,b) — наибольший общий делитель а и b.

Вниз   Решение


В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.

ВверхВниз   Решение


Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.

ВверхВниз   Решение


Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57299

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABC $ \leq$ AB . BC/2.
Прислать комментарий     Решение


Задача 57300

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.
Прислать комментарий     Решение


Задача 57301

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.
Прислать комментарий     Решение


Задача 57302

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.
Прислать комментарий     Решение


Задача 55158

Тема:   [ Неравенство треугольника ]
Сложность: 3
Классы: 8,9

Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .