|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда |PQ| = |QR|. Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете. Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение? а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно. |
Страница: 1 2 >> [Всего задач: 6]
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|