|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что число 11...1 (1986 единиц) имеет по крайней мере Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров. "То" да "это", да половина "того" да "этого" – сколько это будет процентов от трёх четвертей "того" да "этого"? Дан правильный 4n-угольник A1A2...A4n площади S, причём n > 1. Найдите площадь четырёхугольника A1AnAn +1An+2. |
Страница: 1 2 >> [Всего задач: 6]
Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy – в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy – в точке D. (O – начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны.
На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?
Дан правильный 4n-угольник A1A2...A4n площади S, причём n > 1. Найдите площадь четырёхугольника A1AnAn +1An+2.
В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из n человек, команда математических – из m, причём n ≠ m. Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.
Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что f(n) – Qp(n) делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что g(n) = f(n) для любого целого n?
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|