|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На дне озера бьют ключи. Стадо из 183 слонов могло бы выпить озеро за 1 день, а стадо из 37 слонов – за 5 дней. Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника. Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто
одно число. Существует ли такой квадратный трёхчлен P(x) с целыми коэффициентами, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается одними единицами? Города A , B , C и D расположены так, что расстояние от C до A меньше, чем расстояние от D до A , а расстояние от C до B меньше, чем расстояние от D до B . Докажите, что расстояние от города C до любой точки прямолинейной дороги, соединяющей города A и B , меньше, чем расстояние от D до этой точки. Занятия Вечерней Математической Школы проходят в девяти аудиториях. Среди прочих, на эти занятия приходят 19 учеников из одной и той же школы. а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников. б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника? |
Страница: 1 2 >> [Всего задач: 6]
а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников. б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника?
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|