ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Дан куб с ребром 2. Покажите, как наклеить на него без наложений 10 квадратов со стороной 1 так, чтобы никакие квадраты не граничили по отрезку (по стороне или её части). Перегибать квадраты нельзя.

Вниз   Решение


На поле 10 на 10 для игры в "Морской Бой" стоит один четырехпалубный корабль. Какое минимальное число выстрелов надо произвести, чтобы наверняка его ранить?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа?

ВверхВниз   Решение


Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что

$\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0,

то точка плоскости, соответствующая z, лежит внутри этого n-угольника.

ВверхВниз   Решение


У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).

ВверхВниз   Решение


Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

ВверхВниз   Решение


Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.

ВверхВниз   Решение


Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 32784  (#01)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 7,8

Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?
Прислать комментарий     Решение


Задача 32785  (#02)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

Занятия Вечерней Математической Школы проходят в девяти аудиториях. Среди прочих, на эти занятия приходят 19 учеников из одной и той же школы.
  а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников.
  б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника?
Прислать комментарий     Решение


Задача 32786  (#03)

Тема:   [ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 7,8

На плоскости нарисовано 12 прямых, проходящих через точку О. Докажите, что можно выбрать две из них так, что угол между ними будет меньше 17 градусов.
Прислать комментарий     Решение


Задача 32787  (#04)

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Задача 32788  (#05)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

На поле 10 на 10 для игры в "Морской Бой" стоит один четырехпалубный корабль. Какое минимальное число выстрелов надо произвести, чтобы наверняка его ранить?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .