ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Вниз   Решение


Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

ВверхВниз   Решение


В кошельке лежат 2 монеты на общую сумму 15 коп. Одна из них не пятак. Что это за монеты?

ВверхВниз   Решение


Натуральное число называют совершенным, если оно равно сумме всех своих делителей, кроме самого этого числа. (Например, число 28 – совершенное:  28 = 1 + 2 + 4 + 7 + 14.)  Докажите, что совершенное число не может быть полным квадратом.

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


Сколькими способами можно разбить 14 человек на пары?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 30352  (#043)

Темы:   [ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9

Сколько слов можно составить из пяти букв А и не более чем из трёх букв Б?

Прислать комментарий     Решение

Задача 60343  (#044)

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

Прислать комментарий     Решение

Задача 60344  (#45 (пункт б))

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

  а) Каких чисел больше среди целых чисел первой тысячи (включая и 1000): в записи которых есть единица, или остальных?

  б) Каких семизначных чисел больше: тех, в записи которых есть единица, или остальных?

Прислать комментарий     Решение

Задача 30355  (#046)

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 2
Классы: 7,8

Кубик бросают трижды. Среди всех возможных последовательностей результатов есть такие, в которых хотя бы один раз встречается шестёрка. Сколько их?

Прислать комментарий     Решение

Задача 30356  (#047)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

Сколькими способами можно разбить 14 человек на пары?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .