Версия для печати
Убрать все задачи
В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами
других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче
своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона.
Какое наибольшее число баронов могло быть при этих условиях?
(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

Решение
Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Сколько существует четырёхзначных "симпатичных" чисел?


Решение
Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел: (8, 9), (288, 289).


Решение
Из книги выпал кусок, первая страница которого имеет номер 439, а номер последней записывается теми же цифрами в каком-то другом порядке. Сколько страниц в выпавшем куске?

Решение