ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На доске написаны числа
  а) 1, 2, 3, ..., 2003;
  б) 1, 2, 3, ..., 2005.
Разрешается стереть два любых числа и вместо них написать их разность. Можно ли добиться того, чтобы все числа стали нулями?

Вниз   Решение


Пете и Васе подарили одинаковые наборы из N гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение N.

ВверхВниз   Решение


Вершины треугольника обозначены буквами A, B, C по часовой стрелке. Треугольник последовательно поворачивают по часовой стрелке: сначала вокруг вершины A на угол, равный углу A, потом – вокруг вершины B на угол, равный углу B, и так далее по циклу (каждый раз поворот делают вокруг текущего положения очередной вершины). Докажите, что после шести поворотов треугольник займёт исходное положение.

ВверхВниз   Решение


Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 116540  (#9.1)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Неопределено ]
Сложность: 2+
Классы: 8,9

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Прислать комментарий     Решение

Задача 116555  (#10.1)

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 9,10

Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Прислать комментарий     Решение

Задача 116563  (#11.1)

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 116541  (#9.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 2
Классы: 8,9

Дан равнобедренный треугольник ABC  (AB = AC).  На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.

Прислать комментарий     Решение

Задача 116542  (#9.3)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .