ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Как разделить семь яблок между 12 мальчиками, если ни одно яблоко нельзя резать более чем на пять частей?

Вниз   Решение


Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111042

Темы:   [ Описанные четырехугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 9,10,11

Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

Прислать комментарий     Решение

Задача 111040

Темы:   [ Делимость чисел. Общие свойства ]
[ Квадратные уравнения. Теорема Виета ]
[ Уравнения в целых числах ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие натуральные  (a, b),  что a2 делится на натуральное число  2ab2b3 + 1.

Прислать комментарий     Решение

Задача 111043

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Классические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Арифметическая прогрессия ]
Сложность: 4+
Классы: 9,10,11

Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

Прислать комментарий     Решение

Задача 111039

Темы:   [ Объединение, пересечение и разность множеств ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 9,10,11

Дано 101-элементное подмножество A множества  S = {1, 2, ..., 1000000}.
Докажите, что для некоторых  t1, ..., t100  из S множества   Aj = {x + tj | xA;  j = 1, ..., 100}   попарно не пересекаются.

Прислать комментарий     Решение

Задача 111044

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
[ Малая теорема Ферма ]
Сложность: 5+
Классы: 9,10,11

Пусть p – простое число. Докажите, что при некотором простом q все числа вида  np – p  не делятся на q.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .