|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число a + b – 1. Доктор Айболит хочет навестить и корову, и волчицу, и жучка, и червячка. Все четверо живут вдоль одной прямой дороги. Орлы готовы утром доставить Айболита к первому пациенту, а вечером забрать от последнего, но три промежуточных перехода ему придётся сделать пешком. Если Айболит начнёт с коровы, то длина его кратчайшего маршрута составит 6 км, если с волчицы — 7 км, а если с жучка — 8 км. Нарисуйте, как могли располагаться домики коровы, волчицы, жучка и червячка (достаточно одного примера расположения). Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?
Докажите, что медианы разбивают треугольник на шесть равновеликих треугольников. Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10. |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?
Центры O1 , O2 и O3 трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1 , O2 и O3 проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.
Пусть натуральные числа x, y, p, n и k таковы, что
xn + yn = pk.
В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.
Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.
Страница: 1 2 3 4 5 >> [Всего задач: 24] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|