ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).

Вниз   Решение


Внутри треугольника ABC взята точка P так, что  $ \angle$BPC = $ \angle$A + 60o,$ \angle$APC = $ \angle$B + 60o и  $ \angle$APB = $ \angle$C + 60o. Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A', B' и C'. Докажите, что треугольник A'B'C' правильный.

ВверхВниз   Решение


Доказать, что число, состоящее из 300 единиц и некоторого количества нулей, не является точным квадратом.

ВверхВниз   Решение


Автор: Анджанс А.

Последовательность чисел  x1, x2, ...  такова, что  x1 = ½  и     для всякого натурального k.

Найдите целую часть суммы  

ВверхВниз   Решение


В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

ВверхВниз   Решение


Автор: Анджанс А.

Можно ли разрезать плоскость на многоугольники, каждый из которых переходит в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см?

ВверхВниз   Решение


Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?

ВверхВниз   Решение


В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 103881  (#1)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 6,7

Один мальчик 16 февраля 2003 года сказал: "Разность между числами прожитых мною (полных) месяцев и прожитых (полных) лет сегодня впервые стала равна 111". Когда он родился?

Прислать комментарий     Решение

Задача 103882  (#2)

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Найдите наименьшее четырёхзначное число СЕЕМ, для которого существует решение ребуса МЫ + РОЖЬ = СЕЕМ. (Одинаковым буквам соответствуют одинаковые цифры, разным — разные.)

Прислать комментарий     Решение


Задача 103883  (#3)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путник встретил троих островитян и спросил каждого из них: ''Сколько рыцарей среди твоих спутников?''. Первый ответил: ''Ни одного''. Второй сказал: ''Один''. Что сказал третий?

Прислать комментарий     Решение


Задача 103884  (#4)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Прислать комментарий     Решение

Задача 103885  (#5)

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 6,7

В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .