ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется резинка и стеклянные шарики-бусины: четыре одинаковых красных, две одинаковых синих и две одинаковых зелёных. Нужно все восемь бусин нанизать на резинку последовательно, чтобы получился браслет. Сколько различных браслетов можно составить так, чтобы бусины одного цвета не оказались рядом? (Считайте, что застёжки нет, а узелок на резинке незаметен.)

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 65297

Темы:   [ Дискретное распределение ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 8,9,10,11

На новогоднюю ёлку повесили 100 лампочек в ряд. Затем лампочки стали переключаться по следующему алгоритму: зажглись все, через секунду погасла каждая вторая лампочка, ещё через секунду каждая третья лампочка переключилась: если горела, то погасла и наоборот. Через секунду каждая четвёртая лампочка переключилась, ещё через секунду – каждая пятая и так далее. Через 100 секунд всё закончилось. Найдите вероятность того, что случайно выбранная после этого лампочка горит (лампочки не перегорают и не бьются).

Прислать комментарий     Решение

Задача 65298

Тема:   [ Дискретное распределение ]
Сложность: 3
Классы: 8,9,10,11

В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что каждая мама с вероятностью ½ голосует за лучший спектакль и с вероятностью ½ – за спектакль, в котором участвует её ребенок.
  а) Найдите вероятность того, что лучший спектакль победит с перевесом голосов.
  б) Тот же вопрос, если в финал вышло больше двух классов.

Прислать комментарий     Решение

Задача 65300

Темы:   [ Математическая статистика ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Служить на подводной лодке может матрос, рост которого не превышает 168 см. Есть четыре команды А, Б, В и Г. Все матросы в этих командах хотят служить на подводной лодке и прошли строгий отбор. Остался последний отбор – по росту.
  В команде А средний рост матросов равен 166 см.
  В команде Б медиана роста матросов равна 167 см.
  В команде В самый высокий матрос имеет рост 169 см.
  В команде Г мода роста матросов равна 167 см.
В какой команде по крайней мере половина матросов точно может служить на подводной лодке?

Прислать комментарий     Решение

Задача 65296

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Линейные рекуррентные соотношения ]
[ Четность и нечетность ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие.
  а) Кнопка со знаком умножения сломалась и не работает. Рассеянный Учёный нажал несколько кнопок в случайной последовательности. Какой результат получившейся цепочки действий более вероятен – чётное число или нечётное?
  б) Решите предыдущую задачу, если кнопку со знаком умножения починили.

Прислать комментарий     Решение

Задача 65299

Тема:   [ Сочетания и размещения ]
Сложность: 3+
Классы: 8,9,10,11

В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что ровно половина мам честно голосует за лучший спектакль, а другая половина в любом случае голосует за спектакль, в котором участвует её ребенок.
  а) Найдите вероятность того, что лучший спектакль победит с перевесом голосов.

  б) Тот же вопрос, если в финал вышло больше двух спектаклей.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .