ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?

Вниз   Решение


Автор: Назаров Ф.

На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)

ВверхВниз   Решение


Найти на плоскости точку, сумма расстояний от которой до четырёх заданных точек минимальна.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57124

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Прислать комментарий     Решение


Задача 57125

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.
Прислать комментарий     Решение


Задача 57126

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Дан треугольник ABC. Найдите ГМТ X, удовлетворяющих неравенствам  AX $ \leq$ BX $ \leq$ CX.
Прислать комментарий     Решение


Задача 57127

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.
Прислать комментарий     Решение


Задача 57128

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

На окружности фиксирована точка A. Найдите ГМТ X, делящих хорды с концом A в отношении 1 : 2, считая от точки A.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .