|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника. Найдите сумму всех правильных несократимых дробей со знаменателем n. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 76]
Докажите неравенство (
a, b, c ≥ 0. Докажите, что (a + b)(a + c)(b + c) ≥ 8abc.
Докажите для положительных значений переменных неравенство (a + b + c)(a² + b² + c²) ≥ 9abc.
Докажите неравенство для положительных значений переменных: a²(1 + b4) + b²(1 + a4) ≤ (1 + a4)(1 + b4).
Докажите, что при любых a, b, c имеет место неравенство a4 + b4 + c4 ≥ abc(a + b + c).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 76] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|