ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.)

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 57914  (#18.000.1)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при повороте окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57915  (#18.000.2)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.
Прислать комментарий     Решение


Задача 57916  (#18.000.3)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60o (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в C.
Прислать комментарий     Решение


Задача 57917  (#18.000.4)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.
Прислать комментарий     Решение


Задача 57918  (#18.000.5)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата образуют квадрат.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .