ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сендеров В.А.

Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 90]      



Задача 66014

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Существует ли треугольник, для сторон x, y, z которого выполнено соотношение  x³ + y³ + z³ = (x + y)(y + z)(z + x)?

Прислать комментарий     Решение

Задача 98311

Темы:   [ Признаки делимости на 3 и 9 ]
[ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите, что существует бесконечно много таких троек чисел  n – 1,  n,  n + 1,  что:
  a) n представимо в виде суммы двух квадратов натуральных (целых положительных) чисел, а  n – 1  и  n + 1  – нет;
  б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.

Прислать комментарий     Решение

Задача 98319

Темы:   [ Произведения и факториалы ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите неравенство  

Прислать комментарий     Решение

Задача 98379

Темы:   [ Точка Лемуана ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9

CM и BN – медианы треугольника ABC, P и Q – такие точки соответственно на AB и AC, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Оказалось, что  AP = AQ.  Следует ли из этого, что треугольник ABC равнобедренный?

Прислать комментарий     Решение


Задача 98386

Темы:   [ Точка Лемуана ]
[ Разложение на множители ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 7,8,9

  В треугольнике ABC отрезки CM и BN – медианы, P и Q – точки соответственно на AB и AC такие, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Можно ли утверждать, что треугольник ABC равнобедренный, если
  а)  BP = CQ;
  б)  AP = AQ;
  в)  PQ || BC

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .