ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Маркелов С.В.

Сергей Валерьевич Маркелов (род. в 1976 г.) - математик, популяризатор. Живет в Москве.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]      



Задача 103864

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 6,7,8

В книге рекордов Гиннесса написано, что наибольшее известное простое число равно  23021377 – 1.  Не опечатка ли это?

Прислать комментарий     Решение

Задача 111637

Тема:   [ Разные задачи на разрезания ]
Сложность: 3-
Классы: 6,7,8,9

Петя разрезал фигуру на две равные части, как показано на рисунке. Придумайте, как разрезать эту фигуру на две равные части другим способом.


Прислать комментарий     Решение

Задача 103799

Темы:   [ Разные задачи на разрезания ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3-
Классы: 6,7

Разрежьте изображённую фигуру на две части, из которых можно сложить целый квадрат 8×8.

Прислать комментарий     Решение


Задача 116610

Тема:   [ Разные задачи на разрезания ]
Сложность: 3-
Классы: 6,7

Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок).

Прислать комментарий     Решение

Задача 64970

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9,10

Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что  AM = AN = AB  (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .