Страница:
<< 1 2 [Всего задач: 7]
|
|
|
Сложность: 5 Классы: 10,11
|
Перед Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что
a) синий кубик только один;
б) синих кубиков ровно n.
(Алёша может поставить и 0, то есть просто бесплатно открыть коробочку и увидеть цвет кубика.)
|
|
|
Сложность: 5 Классы: 10,11
|
Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть
из точки x либо в точку x/31/2, либо в точку
x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Докажите, что, начиная из любой точки, кузнечик может через несколько
прыжков оказаться на расстоянии меньше 1/100 от точки a.
Страница:
<< 1 2 [Всего задач: 7]