Страница:
<< 1 2 [Всего задач: 8]
|
|
|
Сложность: 4+ Классы: 9,10
|
На диагонали AC вписанного четырёхугольника ABCD взяли произвольную точку P и из неё опустили перпендикуляры PK, PL, PM, PN, PO на прямые AB, BC, CD, DA, BD соответственно. Докажите, что расстояние от P до KN равно расстоянию от O до ML.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
Разность двух углов треугольника больше $90^{\circ}$. Докажите, что отношение радиусов его описанной и вписанной окружностей больше 4.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ.
Страница:
<< 1 2 [Всего задач: 8]