Страница:
<< 33 34 35 36 37 38
39 >> [Всего задач: 194]
|
|
|
Сложность: 4+ Классы: 9,10
|
Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.
|
|
|
Сложность: 5- Классы: 9,10,11
|
Выпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник описанный?
|
|
|
Сложность: 5- Классы: 8,9,10,11
|
Даны две строго возрастающие последовательности положительных чисел, в которых каждый член, начиная с третьего, равен сумме двух предыдущих. Известно, что каждая последовательность содержит хотя бы одно число, которого нет в другой последовательности.
Какое наибольшее количество общих чисел может быть у этих последовательностей?
Замечание к условию. Предполагается, что обе последовательности бесконечны, иначе совпадений, очевидно, может быть сколько угодно (можно взять первые $n$ членов последовательности Фибоначчи 1, 2, 3, 5, 8, 13, ... как первую последовательность, и члены со второго по $(n+1)$-й — как вторую).
|
|
|
Сложность: 5 Классы: 10,11
|
На плоскости даны прямая $l$ и точка $A$ вне ее. Найдите геометрическое место инцентров остроугольных треугольников с вершиной $A$, у которых одна сторона лежит на прямой $l$.
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
Назовём пару различных натуральных чисел
удачной, если их среднее арифметическое (полусумма) и среднее геометрическое (квадратный корень из произведения) — натуральные числа. Верно ли, что для каждой удачной пары найдётся другая удачная пара с тем же средним арифметическим?
(Пояснение: пары $(a,b)$ и $(b,a)$ считаются одинаковыми.)
Страница:
<< 33 34 35 36 37 38
39 >> [Всего задач: 194]