ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53693
Темы:    [ Углы между биссектрисами ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Стороны треугольника равны 1 и 2, а угол между ними равен 60o. Через центр вписанной окружности этого треугольника и концы третьей стороны проведена окружность. Найдите её радиус.


Подсказка

Примените формулу a = 2R sin$ \alpha$.


Решение

Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то

$\displaystyle \angle$BOC = 90o + $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \angle$CAB = 90o + 30o = 120o.

Если R — искомый радиус, то

R = $\displaystyle {\frac{BC}{2\sin \angle BOC}}$ = $\displaystyle {\frac{\sqrt{3}}{2\sin 120^{\circ}}}$ = 1.


Ответ

1.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 427

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .