ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 20]      



Задача 109754

Темы:   [ Показательные функции и логарифмы ]
[ Возрастание и убывание. Исследование функций ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 5-
Классы: 10,11

Докажите, что для всех x(0;) при n>m , где n,m – натуральные, справедливо неравенство

2| sinn x- cosn x| 3| sinm x- cosm x|;

Прислать комментарий     Решение

Задача 64344

Темы:   [ Исследование квадратного трехчлена ]
[ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 3+
Классы: 9,10

Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений  (x – a)(x – b) = x – c,  (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b  имеют решение.

Прислать комментарий     Решение

Задача 110149

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Процессы и операции ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4
Классы: 10,11

Автор: Храмцов Д.

Пусть многочлен  P(x) = anxn + an–1xn–1 + ... + a0  имеет хотя бы один действительный корень и  a0 ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Прислать комментарий     Решение

Задача 56789

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Соображения непрерывности ]
[ Поворот помогает решить задачу ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 5+
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.
Прислать комментарий     Решение


Задача 105191

Темы:   [ Периодичность и непериодичность ]
[ Теоремы о среднем значении ]
[ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 6
Классы: 10,11

Для заданных натуральных чисел k0<k1<k2 выясните, какое наименьшее число корней на промежутке [0; 2π) может иметь уравнение вида

sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0

где A1, A2 – вещественные числа.
Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .