ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 271]      



Задача 105061

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10

Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

Решение

См. задачу 98440.

Ответ

(1, 1).

Прислать комментарий

Задача 109167

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9

Вершины тысячеугольника занумерованы числами от 1 до 1000. Начиная с первой, отмечается каждая пятнадцатая вершина (1, 16, 31 и т.д.). Вершины отмечаются до тех пор, пока не окажется, что все отмечаемые вершины уже найдены. Сколько вершин останутся неотмеченными?

Решение

См. задачу 60495.

Ответ

800 вершин.

Прислать комментарий

Задача 109551

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Даны такие натуральные числа a и b, что число  a+1/b + b+1/a  является целым.
Докажите, что наибольший общий делитель чисел a и b не превосходит числа   .

Решение

  Пусть  d = НОД(a, b).  Так как ab делится на d², то  a² + b² + a + b  делится на d². Число  a² + b²  также делится на d². Поэтому  a + b  делится на d² и    ≥ d.

Прислать комментарий

Задача 109561

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для натуральных чисел k, m и n справедливо неравенство   [k, m][m, n][n, k] ≥ [k, m, n]².

Решение

Сравним степени, в которых данное простое число p входит в левую и правую части доказываемого неравенства. Пусть p входит в разложение числа k на простые множители в степени α, в разложение числа m – в степени β и в разложение числа n – в степени γ. Без ограничения общности можно считать, что  α ≤ β ≤ γ.  Тогда в правую часть p входит в степени 2γ, а в левую – в степени  β + 2γ,  откуда и следует требуемое неравенство.

Прислать комментарий

Задача 109864

Темы:   [ НОД и НОК. Взаимная простота ]
[ Квадратные уравнения. Теорема Виета ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Натуральные числа m и n таковы, что  НОК(m, n) + НОД(m, n) = m + n.  Докажите, что одно из чисел m или n делится на другое.

Решение

Положим  m = kdn = ld,  где  d = НОД(m, n).  Тогда  НОК(m, n) = kld  и, значит,  kld + d = kd + ld.  Отсюда  (k – 1)(l – 1) = 0,  то есть  k = 1  или  l = 1.  В первом случае  m = d,  и n делится на m; во втором случае – наоборот.

Прислать комментарий

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 271]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .