ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



Задача 35660

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 6,7,8

Разрежьте фигуру, полученную из прямоугольника 4×5 вырезанием четырёх угловых клеток 1×1, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат.

Подсказка

Две из частей – уголки из трёх клеток.

Решение

См. рис.

Прислать комментарий

Задача 78028

Темы:   [ Разные задачи на разрезания ]
[ Простые числа и их свойства ]
Сложность: 2+
Классы: 7,8,9

Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.

Решение

Квадраты, на которые разрезан прямоугольник, по условию равны. Поэтому каждая сторона прямоугольника разбита на равные части: одна сторона на m частей, а другая на n. Общее число квадратов равно mn, поэтому  mn = 13.  Но число 13 простое, поэтому одно из чисел m и n равно 1, а другое равно 13.

Ответ

Прямоугольники с отношением сторон  13 : 1.

Прислать комментарий

Задача 103804

Темы:   [ Разные задачи на разрезания ]
[ Пятиугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 7,8

Автор: Ботин Д.А.

Можно ли разрезать на четыре остроугольных треугольника
  а) какой-нибудь выпуклый пятиугольник,
  б) правильный пятиугольник.

Подсказка

б) Каждая сторона пятиугольника содержит сторону одного из треугольников. Все углы правильного пятиугольника тупые.

Решение

а) См. рисунок.

б) Каждая сторона пятиугольника содержит сторону одного из треугольников. У пятиугольника пять сторон, а треугольников у нас четыре. Значит, какие-то две стороны пятиугольника содержат стороны одного и того же треугольника. Следовательно, угол между этими сторонами тупой. Противоречие с тем, что все треугольники должны быть остроугольными.

Ответ

а) Можно;  б) нельзя.

Прислать комментарий

Задача 104064

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6,7

Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части.

Ответ

Прислать комментарий

Задача 115487

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6,7

Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем 16 клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.


Решение

Из условия задачи следует, что искомая фигура должна состоять из 12 клеток. Три возможных фигуры и способы их разрезания показаны на рисунке.












Прислать комментарий

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .