ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]      



Задача 58354

Темы:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Индукция в геометрии ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 8-
Классы: 9,10,11

В этой задаче мы будем рассматривать наборы из n прямых общего положения, т. е. наборы, в которых никакие две прямые не параллельны и никакие три не проходят через одну точку.
Набору из двух прямых общего положения поставим в соответствие точку — их точку пересечения, а набору из трех прямых общего положения — окружность, проходящую через три точки пересечения. Если l1, l2, l3, l4 — четыре прямые общего положения, то четыре окружности Si, соответствующие четырем тройкам прямых, получаемых отбрасыванием прямой li, проходят через одну точку (см. задачу 2.83, а)), которую мы и поставим в соответствие четверке прямых. Эту конструкцию можно продолжить.
а) Пусть li, i = 1,..., 5 — пять прямых общего положения. Докажите, что пять точек Ai, соответствующих четверкам прямых, получаемых отбрасыванием прямой li, лежат на одной окружности.
б) Докажите, что эту цепочку можно продолжить, поставив в соответствие каждому набору из n прямых общего положения точку при четном n и окружность при нечетном n, так, что n окружностей (точек), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности).
Прислать комментарий     Решение


Задача 58355

Темы:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Индукция в геометрии ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 8-
Классы: 9,10,11

Пусть на двух пересекающихся прямых l1 и l2 выбраны точки M1 и M2, не совпадающие с точкой пересечения M этих прямых. Поставим в соответствие им окружность, проходящую через M1, M2 и M.
Если (l1, M1), (l2, M2), (l3, M3) — прямые с выбранными точками в общем положении, то согласно задаче 2.80, а) три окружности, соответствующие парам (l1, M1) и (l2, M2), (l2, M2) и (l3, M3), (l3, M3) и (l1, M1), пересекаются в одной точке, которую мы поставим в соответствие тройке прямых с точками.
а) Пусть l1, l2, l3, l4 — четыре прямые общего положения, на каждой из которых задано по точке, причем эти точки лежат на одной окружности. Докажите, что четыре точки, соответствующие тройкам, получаемым отбрасыванием одной из прямых, лежат на одной окружности.
б) Докажите, что каждому набору из n прямых общего положения с заданными на них точками, лежащими на одной окружности, можно поставить в соответствие точку (при нечетном n) или окружность (при четном n) так, что n окружностей (точек при четном n), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности при четном n).
Прислать комментарий     Решение


Задача 97920

Темы:   [ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10,11

На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.

Прислать комментарий     Решение

Задача 98045

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Разные задачи на разрезания ]
[ Индукция в геометрии ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9,10,11

На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида
y = anx² + bnx + cn  (n = 1, 2, ..., 100)?

Прислать комментарий     Решение

Задача 58106

Темы:   [ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 9,10,11

На плоскости дано n фигур. Пусть Si1...ik – площадь пересечения фигур с номерами i1, ..., ik, a S – площадь части плоскости, покрытой данными фигурами; Mk – сумма всех чисел Si1...ik. Докажите, что:
  а)  S = M1M2 + M3 – ... + (–1)n + 1Mn;
  б)  SM1 - M2 + M3 – ... + (–1)m + 1Mm   при m чётном и
       SM1M2 + M3 – ... + (–1)m + 1Mm   при m нечётном.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .